

C. U. SHAH UNIVERSITY Wadhwan City

FACULTY OF:-Computer Science

DEPARTMENT OF:-Master of Computer Applications

SEMESTER:- V

CODE: - 5CS05MDW1

NAME: - DATA WAREHOUSING & DATA MINING (DWDM)

Teaching and Evaluation Scheme

Subject	Name of the Subject	Teaching Scheme (Hours)			Cre	Evaluation Scheme								
Code						dits	Theory			Practical (Marks)				
		T T		P r	To tal		Sessiona 1 Exam		Universi ty Exam		Internal		Unive rsity	To tal
							Ma rks	H rs	Ma rks	H rs	Pr/ Viva	T W	Pr	
5CS05 MDW1	DATA WAREHOUSING & DATA MINING (DWDM)	4	0	0	4	4	30	1. 5	70	3				10 0

Objectives:-

- To understand the need of Data Warehouses over Databases, and the difference between
- Usage of operational and historical data repositories.
- To be able to differentiate between RDBMS schemas & Data Warehouse Schemas.
- To understand the concept of Analytical Processing (OLAP) and its similarities & differences with respect to Transaction Processing (OLTP).
- To conceptualize the architecture of a Data Warehouse and the need for pre-processing.
- To understand the need for Data Mining and advantages to the business world. The validating criteria for an outcome to be categorized as Data Mining result will be understood. To get a clear idea of various classes of Data Mining techniques, their need, scenarios (situations) and scope of their applicability.
- To learn the algorithms used for various type of Data Mining problems.

Prerequisites:-

• Knowledge of RDBMS and OLTP

Course outline:-

Sr. No.	Course content					
1	Introduction to Data Warehousing, A Multi-dimensional Data Model & Schemas,	6				
	OLAP Operations & Servers					
	An overview and definition along with clear understanding of the four key-words appearing					
	in the definition. Differences between Operational Database Systems and Data Warehouses;					
	Difference between OLTP & OLAP • Overview of Multi-dimensional Data Model, and the basic					
	differentiation between Fact and Dimension; Multi-dimensional Cube Concept Hierarchies of					
	Dimensions Parameters: Examples and the advantages Star, Snowflakes, and Fact Constellations					
	Schemas for Multi-dimensional Databases Measures: OLAP Operations in Multi-dimensional					
	Data Model: Roll-up, Drill-down, Slice & Dice, Pivot (Rotate)Indexing OLAP Data; Type of					

C. U. SHAH UNIVERSITY Wadhwan City

	OLAP Servers: ROLAP versus MOLAP versus HOLAP ,Metadata Repository	
2	Data Warehouse Architecture; Further Development of Data Cube & OLAP	3
	Technology	
	The Design of A Data Warehouse: A Business Analysis Framework; The Process of Data	
	Warehouse Design .A 3-Tier Data Warehouse Architecture; Enterprise Warehouse, Data	
	mart, Virtual Warehouse	
3	Data Mining: Introduction	8
	An Overview; What is Data Mining; Data Mining – on What Kind of Data .Data Mining	
	Functionalities – What Kind of Patterns Can be Mined; Concept/Class Description:	
	Characterization & Discrimination; Mining Frequent Patterns, Associations, and Correlations;	
	Classification & Prediction; Cluster Analysis; Outlier Analysis .Classification of Data Mining	
	Systems. Data Mining Task Primitives.	
4	Data Pre-processing	5
	The need for Pre-processing, Descriptive Data Summarization. Data Cleaning: Missing Values,	
	Noisy Data, Data Cleaning as a Process. Data Integration & Transformation. Data Cube	
	Aggregation; Attribute Subset Selection. Dimensionality Reduction: Basic Concepts only	
_	Numerosity Reduction: Regression & Log-linear Models, Histograms, Clustering, Sampling	
5	Mining Frequent Patterns, Associations, and Correlations	5
	Basic Concepts: Market Basket Analysis; Frequent Itemsets, Closed Itemsets, and	
	Association Rules; Frequent Pattern Mining: A Roadmap Apriori Algorithm: Finding Frequent	
	Itemsets Using Candidate Generation; Generating Association Rules from Frequent Itemsets;	
	Improving the Efficiency of Apriori From Association Mining to Correlation Analysis. Classification & Prediction	12
6		12
	Introduction to Classification and Prediction; Basics of Supervised & Unsupervised Learning; Preparing the Data for Classification and Prediction; Comparing Classification and Prediction	
	Methods. Classification by Decision Tree Induction, Attribute Selection Measures; • Rule-based	
	Classification: Using IF-THEN Rules for Classification; Bayesian Classification: Bayes'	
	Theorem, Naïve Bayesian Classification; Bayesian Belief Networks.	
7	Cluster Analysis	6
,	Introduction to Cluster Analysis; Types of Data in Cluster Analysis; A Categorization of major	U
	Clustering Methods Partitioning Methods; Centroid-Based Technique: K-Means Method.	
8	Data Mining Applications	5
0	Financial Data Analysis, The Retail Industry, The Telecommunication Industry	J
	- Indiana - and Thing on, the Team House, The Telecommunication industry	

Learning Outcomes:

- Ability to create a Star Schema for a given Data warehousing requirements
- Ability to decide the number & levels of pre-computed Data Cubes, the corresponding Metadata and the appropriate OLAP operation
- Ability to apply pre-processing on existing operational & historical data for creation of Data Warehouse
- Ability to apply Apriori algorithm for Association Mining
- Ability to apply Decision Tree and Bayesian algorithms for Classification

Teaching & Learning Methodology:

• Using Whiteboard & Multimedia or OHP

Books Recommended:

1. Data Mining: Concepts & Techniques 3rd ed., **Jiawei Han & Micheline Kamber**, Morgan

C. U. SHAH UNIVERSITY Wadhwan City

Kaufmann Publishers (2006)

- 2. Building the Data Warehouse, W. H. Inmon, Wiley Dreamtech India Pvt. Ltd.
- 3. Data Warehousing: Design, Development and Best Practices, **Mohanty, Soumendra,** Tata McGraw Hill (2006)
- 4. Data Mining, Addison-Wesley, **Pieter Adriaans & Dolf Zentinge**, Pearson (2000)
- 5. Data Mining Methods & Models, **Daniel T. Larose**, Wiley-India (2007)
- 6. Data Mining, Vikram Pudi & P. Radhakrishnan, Oxford University Press (2009)
- 7. Data Warehousing, **Alex Berson & Stephen J. Smith,** Data Mining & OLAP, Tata McGraw-Hill (2004)
- 8. Data Mining Techniques, Michael J. A. Berry & Gordon S. Linoff, Wiley-India (2008)
- 9. Data Mining a Tutorial-based Primer, **Richard J. Roiger & Michael W. Geatz,** Pearson Education (2005)
- 10. Data Mining: Introductory and Advanced Topics, **Margaret H. Dunham & S. Sridhar,** Pearson Education (2008)
- 11. Introduction to Data Mining with Case Studies, G. K. Gupta, PHI (2006)